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Abstract. Theoretical studies of crack motion in brittle materials often use continuum models
where the relation between the crack velocityv and the driving forceF is found to be continuous.
However, for atomistic models the relationv = v(F ) is discontinuous and exhibits hysteresis.
The difference is attributed to inertia, which is more important in atomistic models than in
continuum models. I study the role of temperature in fracture dynamics and present a simple
model study of the brittle-to-ductile transition.

There are several fundamental issues unsolved in the modern theory of fracture dynamics
[1, 2]. The traditional approach to brittle fracture is to study continuum models. However,
in continuum models the stress at the crack tip in an ideally brittle material (no plasticity) is
singular (the stress varies as∼r−1/2 with the distancer from the crack tip). Since breaking
individual bonds at the crack tip is the fundamental crack-growth mechanism in brittle
fracture, it is not clear how accurate a continuum description of brittle fracture is. Another
important difference between continuum and atomistic models is the role of inertia, which
is more important in the atomistic models.

In this paper I study a very simple one-dimensional (1D) atomistic model of brittle
fracture. Marder and co-workers [3] have studied the same model and solved it exactly for
T = 0 using the Wiener–Hopf method. The results presented below extend their result to
finite temperature. Furthermore, forT = 0 we present a comparison between the exact result
and the result obtained using the continuum approximation, and emphasize the importance of
inertia in the atomistic model. We also present a simple model study of the brittle-to-ductile
transition.

We find that the transition from a stationary to a moving crack, as a function of the
applied driving force, occurs continuously in the continuum model. In the atomistic model
(at low temperatures) the transition is discontinuous and exhibits hysteresis as a function
of the driving force. This difference is attributed to the absence of important inertia effects
in the continuum model, and should also hold for more realistic 3D models [4, 3]. Thus, a
crack is either pinned or it propagates with high speed (of the order of the sound velocity).

We consider the 1D model illustrated in figure 1. A string of atoms are connected by
harmonic springs (spring constantk1) to the upper surface of the ‘solid’ and to the lower
part with springs (spring constantk2) which, however, break when the vertical displacement
of an atom exceeds some (atomic) lengthu∗. In addition, the string of atoms are connected
to each other by springs with the bending force constantk0. We assume thatk0 = k2� k1.
The k1-springs represent (schematically) the long-range ‘elasticity’ of the upper part of the
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Figure 1. The one-dimensional model of a crack. The thin and thick vertical lines denote weak
(spring constantk1) and stiff (k2) harmonic springs. The particles (black dots) of massm are
connected by stiff springs with the bending force constantk0.

‘solid’, i.e., k1 ∼ E/W (whereE is the elastic modulus andW the vertical width of the
solid in figure 1).

The equation of motion for atomi is

müi +mηu̇i = k0(ui+1+ ui−1− 2ui)+ k1(l − ui)+ gi + fi (1)

where the forcegi is given by

gi = −k2ui if ui < u∗
gi = 0 if ui > u∗

and wherefi is a fluctuating force associated with the thermal motion of the atoms, which
satisfies

〈fi(t)fj (0)〉 = 2mηkBT δ(t)δij . (2)

The frictionη is introduce in order to damp out the elastic waves emitted from the moving
crack tip; in the calculations presented below we have chosenη very small. Let us introduce
dimensionless variables. We measure length in units ofu∗, time in units of(m/k0)

1/2, energy
in units ofE0 = k0u

2
∗ (E0/2 is the bond energy) and the spring constantk1 in units of k0.

This gives

üi + ηu̇i = ui+1+ ui−1− 2ui + k1(l − ui)+ gi + fi (3)

wheregi = −ui if ui < 1 and zero otherwise, and where

〈fi(t)fj (0)〉 = 2T ηδ(t)δij . (4)

We have solved equations (3) and (4) by numerical integration, with the stochastically
fluctuating forcefi obtained by adding many random numbers which are equally distributed
in the interval between−1/2 and 1/2. As an example, figure 2 shows the dependence on
time of the position,n(t), of the crack tip, for a 1000-atom chain. The initial crack extends
from atom 1 to atom 400 and in the calculation we have usedk1 = 0.01 andη = 0.03.
The external force acting on the crack is increased slowly by increasingl linearly with time
from 8 at t = 0 to 15.5 at t = 250 (the vertical dotted line in figure 2), whilel is kept
constant at 15.5 for t > 250. Note the regular nature of the crack propagation; we have
not observed any (oscillatory) instability in crack propagation for any driving force. This
is consistent with the study of Langer [5], where the continuum version of model (1) was
shown to have only stable steady-state propagating cracks.

In the continuum limit and for zero temperature, equation (3) takes the form

ü+ ηu̇ = u′′ + k1(l − u)+ g(u) (5)

whereu′ = ∂u(x, t)/∂x andu̇ = ∂u(x, t)/∂t . The model (5) differs from the model studied
by Langer in that we use a different form forg(u). Equation (5) has a solution corresponding
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Figure 2. The positionn of the crack tip as a function of time at zero temperature. The initial
crack extends from atom 1 to atom 400. The applied stress is slowly increased by displacing the
upper ‘surface’ in figure 1 froml = 8 at timet = 0 to 15.5 at t = 250 (the dotted vertical line).
For t > 250, l is kept constant at 15.5. In the calculation we have usedη = 0.03 andk1 = 0.01.
The inset shows the discontinuous changes inn associated with breaking the individual bonds.

Figure 3. The relation between the crack velocityv and the displacementl for the continuum
model (dashed line) and the atomistic model (solid line). The calculation is forT = 0 K with
η = 0.03 andk1 = 0.01.

to a crack which moves with the constant velocityv. Substitutingu(x, t) = u(x − vt) in
(5) gives

(1− v2)u′′ + ηvu′ + k1(l − u)+ g(u) = 0. (6)

For x > vt this equation reduces to

(1− v2)u′′ + ηvu′ + k1(l − u)− u = 0
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with the general solution

u = Ae−λ(x−vt) + k1l

k1l + 1
(7)

where

λ = ηv

2(1− v2)
+
[(

ηv

2(1− v2)

)2

+ k1+ 1

1− v2

]1/2

. (8)

For x < vt , equation (6) reduces to

(1− v2)u′′ + ηvu′ + k1(l − u) = 0

with the solution

u = Beµ(x−vt) + l (9)

where

µ = − ηv

2(1− v2)
+
[(

ηv

2(1− v2)

)2

+ k1

1− v2

]1/2

. (10)

At the crack tip (x = vt), u = 1 which gives

A+ k1l/(k1l + 1) = 1 B + l = 1. (11)

From the equation of motion (6) it follows thatu′ is continuous atx = vt which gives

−λA = µB. (12)

Using (8), (10)–(12) gives([
1+ 4(1− v2)(1+ k1)

η2v2

]1/2

+ 1

)/([
1+ 4(1− v2)k1

η2v2

]1/2

− 1

)
= (l − 1)(1+ lk1).

(13)

This relation between the crack velocityv and the displacementl, which is proportional to
the driving force, is shown in figure 3. Note thatv = 0 for l < lc (where lc ≈ 10), and
that the transition from a stationary to a moving crack, as a function of the applied driving
force (which is proportional tol), is continuous. On the other hand, for the atomistic model
the transition isdiscontinuousandexhibits hysteresisas a function of the driving force (see
figure 3). In particular, no steady crack motion is possible for velocityv < vc, where
vc ≈ 0.4. This gap of forbidden crack velocities is due to inertia, as can be understood as
follows.

When the external driving force has increased to the point that the first atom–substrate
bond breaks at the crack tip, the broken-off atom will initially accelerate upwards and,
because of the finite atomic mass,overshootthe equilibrium position associated with a
stationary crack. This implies that the force on the new crack-tip atom, for some short time
interval, will be larger than for the stationary crack. Thus during crack propagation the
effective driving force acting at the crack tip will be larger than the external driving force,
resulting in a ‘high’ (steady-state) crack velocityv. Thus the transition from a stationary
to a moving crack is discontinuous and will exhibit hysteresis as a function of the driving
force.

In the continuum model, an infinitesimal strip of the elastic string will initially break
off from the ‘substrate’. Since this segment of the string has a negligible mass, a negligible
inertia force will be exerted on the part of the string which is bound to the substrate. Thus
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Figure 4. The time variation of the force acting on an atom from springk2 (dashed lines) and
from springsk0 andk1 (solid lines). (a) For the atom at the initial crack-tip position (n = 400).
(b) During steady-state crack motion (n = 608). The results refers to the calculation reported
on in figure 2.

the crack tip will experience the same driving force as at the start of the crack motion, and
the crack will propagate very slowly.

Let us study the effects of inertia in more detail. Figure 4 shows the time dependence
of the upward (solid line) and downward (dashed line) spring forces acting on (a) atom
n = 400 and (b) atomn = 608 in the simulation reported on in figure 2, as the crack tip
passes the atoms. The former force is derived from the springsk0 andk1, while the latter
force is derived from the springk2. In the calculation it is assumed that the driving force
is just large enough to start crack motion (l = 15.5; see figure 3). Figure 4(a) shows the
forces on the crack-tip atom at the initiation of crack motion. Before the crack starts to
move, the upwards and downwards spring forces increase slowly and nearly balance each
other, as they must when inertia effects are negligible (note: the external force is increased
very slowly to its final value, corresponding to the displacementl = 15.5). When the force
in the k2-spring reaches unity, this spring breaks, and the atom accelerates upwards. From
here on, inertia effects are very important. After a short time interval, during which the
crack tip accelerates, a steady state is reached where the crack propagates with a constant
velocity. Figure 4(b) shows the time variation of the spring forces acting on an atom as
the crack tip passes it during steady crack motion. In this case, owing to inertia, when the
force in thek2-spring equals unity, the upward spring force is roughly twice as large as the
force in the springk2. That is, the effective driving force is much larger than the external
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Figure 5. The temperature dependence of the relation between the crack velocityv and the
displacementl for the atomistic model. Forη = 0.03 andk1 = 0.01.

driving force, and as a result the crack tip moves ‘fast’.
Let us now discuss the influence of temperature on the hysteresis cycle in figure 3.

Figure 5 shows the relation between the crack velocityv and the displacementl for the
temperaturesT = 0, 0.001 and 0.01. Note that the onset of crack propagation decreases
when the temperature increases. The physical origin of this effect is clear: even if the
external force is below the value necessary to break the bond, forT > 0 a thermal fluctuation
can break the (stretched) bond at the crack tip. When the bond is broken, inertia effects
will increase the effective force acting on the crack tip which may induce the next bond
to break. This ‘chain reaction’ will accelerate the crack until it finally reaches a steady
state. Thus the higher the temperature, the smaller the hysteresis cycle. In addition, the
longer the crack is exposed to external forces, the larger the chance will be that a large
enough thermal fluctuation will occur, which will start crack motion (in the simulations in
figure 5 the crack was studied for 600 time units). Thus the size of the hysteresis cycle
(for T > 0 K) depends on the loading rate. When the temperatureT is high ‘enough’ the
relation betweenv and the driving force is continuous and exhibits no hysteresis. This is
illustrated in figure 6 (thick dashed line) which showsv as a function ofl whenT = 0.1. In
figure 7 we show the positionn(t) of the crack tip forl = 10.5 and 12 withT = 0.1. Note

Figure 6. The dependence of the crack velocity onl for T = 0 (solid line) and forT = 0.1
(thick dashed line). Forη = 0.03 andk1 = 0.01.
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Figure 7. The positionn of the crack tip as a function of time atT = 0.1 and forl = 10.5 and
12. The initial crack extends from atom 1 to atom 400. Forη = 0.03 andk1 = 0.01.

that for a ‘large’ driving force (l = 12) the fluctuations inn, which are due to the finite
temperature, are very small. On the other hand, forl = 10.5 the fluctuations inn(t) are
relatively large, and for some short time intervals,n(t) even decreases. At lower applied
force this effect becomes even larger: the crack tip will perform a Brownian motion with
only a slight drift in the direction of increasing crack length. We note, however, that in
real systems the ‘backward’ jumps (which result in a decrease in the length of the crack)
may not occur since the ‘fresh’ crack areas may immediately reconstruct, or the surface
dangling bonds may rapidly react with foreign atoms, e.g., from the atmosphere. Finally,
note that for real solids plastic deformations are usually important at high temperatures, but
such effects are not included in the model studied above.

In the 3D case the crack tip is a line rather than a point. Due to the inhomogeneities
which occur in most real materials, the crack tip will exhibit pinning forces which vary
along the crack line. If the crack grows by a segment of the crack front jumping forward
only to be stopped by a tougher region, then a point on the crack front a distancer away
will initially ‘feel’ no change in stress. However, after a time period corresponding to
the time∼r/c that it takes for the sound (Rayleigh) waves to propagate between the two
points, the stress will temporarily increase at the second point on the crack line. Suchstress
overshootcan cause segments of the crack front to make a jump forwards that would not
have been triggered by the static-stress changes. As with the atomic inertia effect discussed
above, one can argue that this leads to an effective increase in the driving force and to a
discontinuous onset of crack propagation and to hysteresis [6]. This effect should prevail
in both continuum and atomistic models of brittle fracture.

The results above indicate that in ‘simple’ brittle solids at zero temperature, and in the
absence of reactive foreign atoms and molecules, a crack is either pinned or moves rapidly
with a speed of the order of the sound velocity. This result is inconsistent with the (often-
made) assumption of a critical region wherev ∼ (F − Fc)β when the driving forceF is
above but close to the onsetFc force for crack propagation. However, slow crack motion
can occur under three different conditions. Firstly, at sufficiently high temperature, the crack
motion may be continuous (see figure 3). Secondly, stress corrosion may occur where the
bonds at the crack tip are (irreversibly) broken by reaction with foreign atoms or molecules,
e.g., from the surrounding atmosphere. This may lead to a slow ‘creep’ motion even if the
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driving force is belowFc. Thirdly, in materials where the fracture energy is much larger than
the surface energy of the surfaces created, large plastic or viscoelastic deformations occur
in the vicinity of the crack tip, which may allow slow motion of the crack tip. This follows
from the fact that large local energy dissipation at the crack tip reduces the importance
of inertia effects (the motion may become ‘overdamped’) which makes slow crack motion
possible. Thus, slow crack motion has been observed in model studies of the brittle fracture
of polymers, where pulling out of the polymer chains leads to large energy dissipation [7].
Similar effects may occur in metals where large plastic deformations usually occur in the
vicinity of the crack tip. These processes probably give rise to the slowly moving cracks
that have been observed in many experiments, e.g., in polymers [8] and in soda-lime silica
glasses and metallic alloys [9] (in the experiments in [9] the velocities were in the range
v = 10−9–10−7m s−1 and thermal activation must have played an important role). We also
note that in many cases the surfaces of fractured materials exhibit a self-affine structure
[9, 10], which can be naturally explained if the crack tip is assumed to obey anoverdamped
equation of motion (i.e., inertia is assumed negligible), with a random pinning potential
arising from inhomogeneities in the solid [6, 11, 12].

Finally, let us briefly comment on the ductile-to-brittle transition. In simple atomistic
solids, the local stress at a crack tip at the onset of brittle fracture is of order the bulk
elastic modulusE. For most metals this is∼100 times larger than the stress necessary for
plastic deformations. Thus one may think that large plastic deformations and ductile fracture
rather than brittle fracture always occur for metals. However, this is not necessarily the case
for the following reason. Plastic deformation in crystalline materials is due to the motion
of pre-existing dislocations and the generation of new dislocations. Because of the finite
concentration of dislocations and dislocation sources, it is very unlikely that a dislocation
(or dislocation source) will occur right at an atomically sharp crack tip. Thus, ifd is the
average distance between two nearby dislocations, then one expects the distance between
a crack tip and a nearby dislocation to be∼d. Thus if the stress at the crack tip is∼E,
then the stress at the dislocation will be∼(a/d)1/2E (wherea is an atomic dimension), and
if this is below the macroscopic yield stressσc ∼ E/100, negligible plastic deformation
is expected and brittle fracture will occur. However, time-dependent plastic flow (creep)
can also occur as a result of thermal excitation even if the external stress is below that
necessary for plastic deformation at zero temperature. Thus, a material which is brittle at
‘low’ temperatures may be ductile at ‘high’ temperatures. Similarly, since creep requires
‘long’ times to give rise to ‘large’ plastic flow, if a material is exposed to external forces
which vary rapidly over time it may undergo brittle fracture, while ductile fracture may
occur if the external forces change slowly with time.

Since dislocations usually have a large spatial extent, first-principles computer simul-
ations of the brittle–ductile transition are essentially impossible with present-day computers
[13]. However, one may use simple models to capture the essentials of the nature of this
transition. We will illustrate this with the 1D model studied above. When local plastic flow
occurs in the vicinity of the crack tip in a real material, it usually reduces the stress at the
crack tip, and the externally applied stress must be increased to an even higher value before
the local stress at the crack tip is high enough to break the local bonds. We can model this
approximately by, instead of reducing the stress at the crack tip, strengthening the bond at the
crack tip. Thus we allow the spring constant at the crack tip to vary with time:k2→ h(t)k2

whereh(t) is determined as follows. The probability rate for plastic deformation is taken
to bew = ν exp(−1E/kBT ) where the activation energy1E = 1E0 − Aui where1E0

andA are constants. The probabilityP that plastic deformation will occur in a short time
interval τ (taken to be the discretizing time period used in the integration of the equations



Atomistic models of brittle fracture 10537

of motion (3)) is assumed to beP = wτ . To take into account the stochastic nature of the
thermal excitation over the barrier (leading to local plastic flow), we use random numbers
to determine when the plastic deformation occurs. Thus, ifr is a random number between
zero and one, ifP > r plastic deformation is assumed to have occurred in the time interval
τ , andh(t) is increased by1h. In the simulation presented below we have used1h = 0.1,
and (in the dimensionless units introduced earlier)ν = 100 and1E = 0.6− 0.5ui . Note
that in this case no plastic flow can occur at zero temperature since1E > 0 for ui = 1.

Figure 8. The positionn of the crack tip and the strengthh of the bond at the crack tip as
functions of time. (a) ForT = 0.025. The displacementl is increased linearly with time from
l = 8 at t = 0 to l = 16 at t = 160 (the dotted vertical line) after whichl is kept constant at
l = 16. (b) As (a), but for a more rapid increase inl (from l = 8 to 16 whent increases from
0 to 133.33). (c) As (a), but withT = 0.01.

Figure 8 shows the results of three simulations when ‘plasticity’ is included according
to the prescription outlined above. The positionn of the crack tip and the strengthh of the
bond at the crack tip are shown as functions of time. In (a) the temperatureT = 0.025.
The displacementl is increased linearly with time from 8 att = 0 to 16 att = 160 (the
dotted vertical line) after whichl is kept constant atl = 16. In this case strong plastic
deformation occurs and the crack tip is pinned. In (b) the external force is applied more
rapidly than in (a) (l increases from 8 to 16 whent increases from 0 to 133.33) resulting
in brittle fracture. Similarly, if the temperature is lowered below some critical temperature,
brittle crack motion occurs. This is illustrated in (c) forT = 0.01 but with all of the other
parameters the same as in (a).
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